VK_QCOM_render_pass_transform

Other Extension Metadata

Last Modified Date

2023-12-13

Interactions and External Dependencies
Contributors
  • Jeff Leger, Qualcomm Technologies, Inc.
  • Brandon Light, Qualcomm Technologies, Inc.
  • Matthew Netsch, Qualcomm Technologies, Inc.
  • Arpit Agarwal, Qualcomm Technologies, Inc.

Description

This extension provides a mechanism for applications to enable driver support for render pass transform.

Mobile devices can be rotated and mobile applications need to render properly when a device is held in a landscape or portrait orientation. When the current orientation differs from the device’s native orientation, a rotation is required so that the up direction of the rendered scene matches the current orientation.

If the Display Processing Unit (DPU) does not natively support rotation, the Vulkan presentation engine can handle this rotation in a separate composition pass. Alternatively, the application can render frames pre-rotated to avoid this extra pass. The latter is preferred to reduce power consumption and achieve the best performance because it avoids tasking the GPU with extra work to perform the copy/rotate operation.

Unlike OpenGL ES, the burden of pre-rotation in Vulkan falls on the application. To implement pre-rotation, applications render into swapchain images matching the device native aspect ratio of the display and pre-rotate the rendering content to match the device’s current orientation. The burden is more than adjusting the Model View Projection (MVP) matrix in the vertex shader to account for rotation and aspect ratio. The coordinate systems of scissors, viewports, derivatives and several shader built-ins may need to be adapted to produce the correct result.

It is difficult for some game engines to manage this burden; many chose to simply accept the performance/power overhead of performing rotation in the presentation engine.

This extension allows applications to achieve the performance benefits of pre-rotated rendering by moving much of the above-mentioned burden to the graphics driver. The following is unchanged with this extension:

The following is changed with this extension:

New Structures

New Enum Constants

  • VK_QCOM_RENDER_PASS_TRANSFORM_EXTENSION_NAME
  • VK_QCOM_RENDER_PASS_TRANSFORM_SPEC_VERSION
  • Extending VkRenderPassCreateFlagBits:
    • VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM
  • Extending VkStructureType:
    • VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM
    • VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM

Issues

1) Some early Adreno drivers (October 2019 through March 2020) advertised support for this extension but expected VK_STRUCTURE_TYPE values different from those in the vukan headers. To cover all Adreno devices on the market, applications need to detect the driver version and use the appropriate VK_STRUCTURE_TYPE values from the table below.

The driver version reported in VkPhysicalDeviceProperties.driverVersion is a uint32_t type. You can decode the uint32_t value into a major.minor.patch version as shown below:

uint32_t  major = ((driverVersion) >> 22);
uint32_t  minor = ((driverVersion) >> 12) & 0x3ff);
uint32_t  patch = ((driverVersion) & 0xfff);

If the Adreno major.minor.patch version is greater than or equal to 512.469.0, then simply use the VK_STRUCTURE_TYPE values as defined in vulkan_core.h. If the version is less than or equal to 512.468.0, then use the alternate values for the two VK_STRUCTURE_TYPEs in the table below.

Table 1. Adreno Driver Requirements
Adreno Driver Version

512.468.0 and earlier

512.469.0 and later

VK_STRUCTURE_TYPE_ RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM

1000282000

1000282001

VK_STRUCTURE_TYPE_ COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM

1000282001

1000282000

2) Should the extension support only rotations (e.g. 90, 180, 270-degrees), or also mirror transforms (e.g. vertical flips)? Mobile use cases only require rotation. Other display systems such as projectors might require a flipped transform.

RESOLVED: In this version of the extension, the functionality is restricted to 90, 180, and 270-degree rotations to address mobile use cases.

3) How does this extension interact with VK_EXT_fragment_density_map?

RESOLVED Some implementations may not be able to support a render pass that enables both render pass transform and fragment density maps. For simplicity, this extension disallows enabling both features within a single render pass.

4) What should this extension be named?

We considered names such as rotated_rendering, pre_rotation and others. Since the functionality is limited to a render pass, it seemed the name should include render_pass. While the current extension is limited to rotations, it could be extended to other transforms (like mirror) in the future.

RESOLVED The name render_pass_transform seems like the most accurate description of the introduced functionality.

5) How does this extension interact with VK_KHR_fragment_shading_rate?

RESOLVED: For the same reasons as issue 3, this extension disallows enabling both pFragmentShadingRateAttachment and render pass transform within a single render pass.

However, pipeline shading rate and primitive shading rate are supported, and their respective fragmentSize and PrimitiveShadingRateKHR are provided in the current (non-rotated) coordinate system. The implementation is responsible for transforming them to the rotated coordinate system.

The set of supported shading rates may be different per transform. Supported rates queried from vkGetPhysicalDeviceFragmentShadingRatesKHR are in the native (rotated) coordinate system. This means that the application must swap the x/y of the reported rates to get the set of rates supported for 90 and 270 degree rotation.

Version History

  • Revision 1, 2020-02-05 (Jeff Leger)
  • Revision 2, 2021-03-09 (Matthew Netsch)
    • Adds interactions with VK_KHR_fragment_shading_rate
  • Revision 3, 2022-07-11 (Arpit Agarwal)
    • Adds interactions with VK_QCOM_tile_properties
  • Revision 4, 2023-12-13 (Matthew Netsch)
    • Relax dependencies on VK_KHR_surface and VK_KHR_swapchain